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Although hydroplaning is a major contributor to roadway crashes, it is not typically reported in conventional crash da-
tabases. Hence, a framework to classify various crash attributes from police reports and to identify hydroplaning
crashes is strongly needed. This study applied natural language processing (NLP) tools to seven years (2010–2016)
of crash data from the Louisiana traffic crash database to identify hydroplaning related crashes. This research focused
on the development of a framework to apply interpretablemachine learning models to unstructured textual content in
order to classify the number of vehicle involvements in a crash. This approach evaluated the effectiveness of keywords
in determining the classification. This study used three machine learning algorithms. Of these algorithms, the eXtreme
Gradient Boosting (XGBoost) model was found to be the most effective classifier. This research provided a platform to
understand the application of interpretability in machine learning models. The outcomes of this study prove that un-
derlying trends or precursors can be revealed and analyzed through these models. Furthermore, this indicates that
quantitative modeling techniques can be used to address safety concerns.
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1. Introduction

Hydroplaning is a dangerous phenomenon that can cause roadway
crashes and result in severe injuries or fatalities. The term hydroplaning is
often used by roadway users to describe a wide variety of wet-roadway
driving hazards. However, the more accurate definition of hydroplaning
describes a specific condition of tire skidding on wet pavement in which
the automobile tires float on a layer of water at a high speed, causing the
driver to lose control of the vehicle. This occurs when the water underneath
the tire cannot escape, and hydrodynamic pressure builds up to sustain the
floating tire over the area. Some common contributing factors of hydro-
plane crashes include vehicle speed, tire pressure, tread depth, pavement
texture, and roadway and environmental conditions (Federal Highway
Administration, n.d.).

Previous research on hydroplaning crashes has followed conventional
methods to establish relationships between crash frequency and key con-
tributing factors, such as the ones mentioned above (Enustun, 1976;
Black and Jackson, 2000; Aycock, 2008; Gunaratne et al., 2012;
Jayasooriya and Gunaratne, 2014; Zhou et al., 2019). Many recent studies
have focused on determining which factors significantly affect different
crash characteristics. Conventional data analysis methods perform crash
tta@utsa.edu, (A. Dutta), kakan.dey@
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frequency or injury severity analysis on police-reported crash data. How-
ever, these reports usually contain a textual description of the crash event
that has not been explored. Information from these narratives can require
significant effort to understand the event circumstances as they are not
stored electronically, and they are presented as unstructured or semi-
structured free-text data format. Because of this, precision information
can be lost through manual and time-consuming interpretation of these
text reports.

Textmining has become an increasingly popular research area since it is
effective in identifying valuable patterns and hidden insights from plain
texts. This study used text mining and machine learning (ML) algorithms
to investigate hydroplaning crashes and develop text mining-based models
to determine key crash contributing factors such as road, vehicle, and envi-
ronmental conditions. This study aims to evaluate various text mining clas-
sification techniques by measuring their ability to classify crash narratives
for seven years of crash data obtained from the Louisiana traffic crash data-
base. The study evaluated three ML algorithms: support vector machine
(SVM), random forest (RF), and eXtreme Gradient Boosting (XGBoost).

The structure of this paper is as follows: the literature review provides a
comprehensive overview of previous studies focused on hydroplane
crashes. The paper then introduces the modeling tools used in the study.
mail.wvu.edu, (K. Dey), abhisek.civ@iitbhu.ac.in. (A. Mudgal).
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The next sections demonstrate the data preparation and application of text
mining techniques. Finally, this paper describes the results of this evalua-
tion, followed by the conclusions and discussion of the study.

2. Literature review

Most of the studies included in this review focus on theoretical concept
development for hydroplaning occurrences (Enustun, 1976; Black and
Jackson, 2000; Aycock, 2008; Gunaratne et al., 2012). There are a limited
number of studies that aim to determine the key contributing factors of
hydroplaning related crashes.

2.1. Studies on hydroplaning crashes

In 1976, Enustun (1976) conducted a study that aimed to avoid the re-
currence of identified hydroplaning crashes. To achieve this, Enustun iden-
tified the locations of crashes associated with hydroplaning to examine the
road, vehicle, and weather conditions related to hydroplaning. The study
concluded that true hydroplaning crashes on highways were rare and
made up less than 5% of wet-pavement crashes. Enustun suggested that a
greater effort be made to educate the public about the degree of tire capa-
bility deterioration on wet pavements under rapid speeds. Black and
Jackson (2000) conducted a study examining the phenomenon of hydrody-
namic drag, which is virtually anonymous to highway and transportation
engineers. Aycock (2008) investigated a 2003 hydroplaning crash on an in-
terstate highway in Georgia and concluded that the speed of the vehicle, the
condition of the tires, and the depth of thewater on the roadway all contrib-
uted to the hydroplaning crash. Gunaratne et al. (2012) developed statisti-
cal models that estimated wet weather speed reduction as well as analytical
and empirical methods to predict hydroplaning speeds of trailers and heavy
trucks. Using crash data, geometrical data, pavement condition data, and
other relevant information available for Florida roadways, the study con-
ducted a wet weather crash analysis. The results of this study indicated
that wider sections increased the likelihood of hydroplaning crashes, and
dense-graded pavements were more likely to induce conditions fit for
hydroplaning than open-graded ones. In a follow-up study, Jayasooriya
and Gunaratne (2014) developed statistical models to estimate the thick-
ness of water film that develops on roadways and classified the correspond-
ing threshold hydroplaning speed into empirical, analytical, and numerical
categories. Zhou et al. (2019) conducted a study to measure the impacts of
automated vehicles (AV) on roadway hydroplaning and pavement life in
comparison to human-driven vehicles. The results showed that a uniformly
distributed lateral wandering pattern for AVs prolonged pavement fatigue
life, decreased pavement rut depths, and reduced hydroplaning potential.

2.2. Text mining studies on crash narratives

Text mining, an extremely useful data analysis technique, has been used
to extract valuable information from large text-based datasets. Text mining
methods can identify patterns and anomalies in data over time, determine
key contributing factors, and develop predictive models to solve real-
world problems (Gopalakrishnan and Khaitan, 2017; Jin et al., 2007).
In-depth text mining has primarily been used in crash and injury analysis
to gain insights from occupational crash reports (Abdat et al., 2014;
Marucci-Wellman et al., 2011; Smith et al., 2006; Bertke et al., 2016;
Vallmuur et al., 2016; Bondy et al., 2005; Bunn et al., 2008; Williamson
et al., 2001), health care reports (Chen et al., 2016; Marucci-Wellman
et al., 2015; Wang et al., 2012), automobile crash reports (Marucci-
Wellman et al., 2011; Smith et al., 2006; Bertke et al., 2016; Vallmuur
et al., 2016; Bondy et al., 2005; Bunn et al., 2008; Williamson et al.,
2001; Chen et al., 2016; Marucci-Wellman et al., 2015; Wang et al.,
2012), and others (Gopalakrishnan and Khaitan, 2017; Jin et al., 2007;
Brown, 2016).

Concept Chain Queries, a special case of text mining, is used to identify
essential evidence trails across documents to explain relationships between
two topics of interest (Jin et al., 2007). Researchers have developed a text
2

search technique to explore the utility of crash narrative text analysis for
generating code to determine injury mechanisms (Williamson et al.,
2001). Haddon's matrix provided a conceptual framework for researchers
to code text from work-related injury reports to identify the contributing
factors of these injuries (Bondy et al., 2005). In another study, Haddon's
matrix separated the fatal incident into three event phases (pre-event,
event, post-event) and provided a coded data set as well as coding rules
(Bunn et al., 2008).

Although the crash data are small and fairly homogenous, it is challeng-
ing to recognize patternswithin the narrative text. A combinedNaïve-Fuzzy
Bayesian approach can be used to provide a more accurate narrative classi-
fication and to identify the data that require manual review, thus reducing
the burden on human coders (Abdat et al., 2014; Marucci-Wellman et al.,
2015; Graves et al., 2015). Researchers have also utilizedDUALIST to easily
classify data; DUALIST is an online interactive program that allows novice
users to quickly classify thousands of narratives after approximately
60 min of training (Gopalakrishnan and Khaitan, 2017). Studies have also
evaluated the effectiveness of the Bayesian-based model in comparison to
other ML algorithms. The Bayesian-based model was compared to the neu-
ral network (Gopalakrishnan and Khaitan, 2017), logistic regression model
(Pollack et al., 2013; Sorock et al., 1996), and support vector machine
model (Sorock et al., 1996), all of which provided higher accuracy in clas-
sifying the emerging causes of occupational injury.

Another study compared a Semi-Supervised Set Covering Machine
(S3CM) learning algorithm to the Transudative Vector Support Machine
(TVSM), the original fully supervised Set Covering Machine (SCM), and
‘Freetext Matching Algorithm’ natural language processor. The S3CM algo-
rithm was developed to detect the presence of coronary angiograms and
ovarian cancer diagnoses from electronic health record narratives. The
model does not rely on linguistic rules and worked effectively after being
trainedwith pre-classified test data sets. The study found that S3CM results
were better than TVSM and fully supervised SCM (Williams and Betak,
2016).

Text mining has become an increasingly popular crash analysis
method in the area of transportation engineering. A study demonstrated
a connectionist-based model to classify free-text crash descriptions
(Chatterjee, 1998); singular value decomposition was used for feature ex-
traction and network training. This model was evaluated in comparison
to a fuzzy Bayes model and a keyword-based model. All three models
were applied to human classified data, and the study found that the connec-
tionist and fuzzy Bayes model outperformed the keyword model. Another
study performed exploratory text mining and empirical Bayes (EB) data
mining to understand the associations between vehicle condition and auto-
motive safety (Das et al., 2018). These methods were used to identify key
crash causing factors in terms of vehicular manufacturing defects
(e.g., airbags, brake system, seat belts, and speed control).

Researchers developed a three-level hierarchical Bayesian model, named
Latent Dirichlet Allocation (LDA), to identify major recurring crash topics
from textual data compiled from the Federal Railroad Administration (FRA)
reports. The researchers then applied a text clustering method to the text
using Jigsaw text visualization software and found that both methods had
equal effects. In another study, LDA, RF, and partial least squares techniques
were combined and applied to identify the contributing factors and to accu-
rately predict the cost of railroad crashes (Pollack et al., 2013). Researchers
also used logistic regression (Fitzpatrick et al., 2017; Graves et al., 2015;
Williams and Betak, 2016), clustering (Williams and Betak, 2016), and
other computational tools (e.g., Statistical Analysis System (SAS) and
Leximancer) (Nayak et al., 2010; Sorock et al., 1996) to identify vehicle
crash factors. In summary, computerized approaches and predictive models
can be used to standardize crash narrative text analysis and reduce human
error in crash and injury surveillance.

The literature review indicates that there is a need for further research
and an in-depth investigation on hydroplaning crashes. As hydroplaning
crashes can often involve multiple-vehicles, this study aims to identify the
trends from crash narratives by performing ML and classifying the nature
of single and multiple-vehicle involvement in hydroplaning crashes.



Fig. 1. Hydroplaning crashes by Parishes.
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3. Methodology

3.1. Defining hydroplaning crashes

Hydroplaning refers to uncontrolled sliding of a vehicle on the wet road
surface. It is triggered when a tire experiences more water than it can dissi-
pate between the tire tread and highway surface bed, resulting in traction
failure. The pressure of water generated in the front wheel forces the
water to wedge under the tire's foremost edge causing the tire to get lifted
from the highway surface. The result makes the tires skate on the water
sheet with little or no contact on the highway surface, which makes the
driver lose control of vehicle. The result is a hydroplaning crash (Traction
friction of tires by Ron Kurtus - physics lessons: school for champions, n.d.;
Roadway hydroplaning - the trouble with highway cross slope, n.d.). Yeager
(1974) examined tire hydroplaning and its effect on wet traction and
gathered a wide range of data.
3

3.2. Machine learning models

ML models are gaining popularity among the researchers due to the
high prediction power and flexibility. A ML model is created by a ML algo-
rithm or a set of rules that helps in learning how to predict a specific out-
come based on past events. ML can identify patterns in the data and make
predictions based on a training process. Once a model is developed, it can
be used to predictmeasures or classify types based on the research question.
In comparison to ML, conventional statistical modeling uses mathematical
equations to identify associations between variables. It is also significantly
beneficial because it has a higher interpretability than ML models. One
major disadvantage of statistical modeling is its dependence on pre-
determined assumptions. The major disadvantage of ML models is that it
is more challenging to comprehend or describe the outcomes (Friedman,
2001; Molnar, 2018). Natural Language Processing (NLP) and Text Mining
(TM), in conjunction with ML, are an efficient data-centric tool to collect,

Image of Fig. 1


Fig. 2. Association between sequences of harmful events in hydroplaning crashes.
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analyze, and extract interesting findings or patterns from big data such as
the collection of crash narrative reports. This study performedmultiple lon-
gitudinal studies to illustrate various interesting patterns and anomalies in
the data using textmining pipelines. The classification experiment designed
in this study included three ML classifiers: RF, SVM, and XGBoost. Inter-
ested readers can consult Bishop's book for a more complete review of
these algorithms (Bishop, 2011).
3.2.1. Random forest (RF)
The framework of the random forest (RF) algorithm is based on the bag-

ging principle (Breiman, 2001) and random subspace method (Ho, 1998).
The core step involves developing a collection of decision trees with
random predictors. The two important byproducts in this process are
1) out-of-bag error rate (OOB) and 2) variable importance measures (VIM).
The OOB is known as the misclassification rate, and it decreases as the num-
ber of trees increase. The number of trees does not affect overfitting the data;
therefore, a significant number of trees can be used. To decrease the bias and
correlation, the trees are grown to theirmaximumdepth (Ho, 1998). VIM can
be measured by the classification accuracy and Gini impurity (the criterion
that each child node reaches its highest purity, with all observations on
that child node belonging to the same classification).
3.2.2. Support vector machine (SVM)
In 1963, Vapnik and Lerner introduced the concept of Generalized

Portrait algorithm (History of SVM, n.d.). It has been considered as the
core conceptual framework for developing support vector machine
(SVM). Later, Vapnik started the field of statistical learning theory in
1974 (History of SVM, n.d.). Vapnik et al. introduced the current form of
the SVM on a basis of a separable bipartition problem at the AT & T Bell
Laboratories in 1992 (Smola and Schölkopf, 2004). It adopts the theory of
minimizing structural risk instead of minimizing empirical risk (also
known as training error). SVM can be applied for solving both classification
and regression problems. By expressing the regression or classification
outcomes in terms of linear combination (using training data), it generates
a fraction of data points known as support vectors (with non-zero
co-efficient). The key concept of SVM is to map the data x into a high-
4

dimensional feature space F via a nonlinear mapping (Cornejo-Bueno et
al., 2016).

3.2.3. Extreme Gradient Boosting (XGBoost)
Tree boosting is a very effective ML tool. XGBoost implements ML

algorithms under the framework of gradient boosting (Friedman, 2001).
It provides a parallel tree boosting algorithm that reaches to the optimized
point in a fast and accurate way. This framework has several advantages
such as efficient regularization parameters, early stopping, parallel process-
ing, effective loss functions, and different base learners. The success of
XGBoost relies on its scalability.

3.3. Interpretability

Statistical models are widely popular based on its interpretability.
Modeling frameworkwith adequate interpretability can help users compre-
hend how the estimations were determined (Lundberg and Lee, 2016). The
supervisedML algorithms are trained to predict the outcome variable based
on the training data. Due to its keen focus on improving precision, the inter-
pretability part has been usually not prioritized. For example, an algorithm
aiming to determine a non-motorist in the traveling path of an autonomous
vehicle solely focuses on high prediction accuracy. Interpretationmight not
be the key focus in such case as inaccuracy of the algorithm can involve a
fatal or serious injury. However, interpretation is significantly important
for some cases. A model with high interpretability means that the model
can explain its decision, and the end-users can understand how to improve
the decision-making function. Inmany cases, interpretability can be used as
a decisionmaking tool. In summary, an interpretablemodel can ensure fair-
ness, data protection, consistency, interconnection, and trust (Fisher et al.,
2018; Molnar, 2018).

4. Data description

4.1. Data preparation

The dataset of the current study is comprised of crash narrative reports
in text format that were collected from police-reported crashes in Louisiana

Image of Fig. 2
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from 2010 to 2016. The current dataset does not provide filtering options
for hydroplaning related crashes. The researchers used a text searching al-
gorithm to identify crashes associated with the keywords: ‘hydroplane’
and ‘hydroplaning.’ Additionally, word stemming was conducted to make
the search robust. Initially, the search algorithm identified 703 crash re-
ports that might be related to hydroplaning. Undergraduate students
inspected those crash reports and removed reports that were out of the
scope of hydroplaning related crashes. This resulted in a total of 652 re-
maining crash reports.

Fig. 1 illustrates the spatial distribution of hydroplaning crashes for dif-
ferent parishes. Out of 64 Parishes, 51 Parishes experience at least one
hydroplaning crash during 2010–2016. The illustration also shows that
East Baton Rouge has a high number of hydroplaning crashes.
4.2. Contexts of single-vehicle and multiple-vehicle hydroplaning crashes

One of the most important aspects of understanding hydroplaning
crashes is to comprehend the mechanism of crash events. It is also impor-
tant to know the patterns of single and multiple-vehicles crashes associated
Table 1
Chi squared tests and descriptive statistics for key variables.

Attributes Multiple Single p-Value

N =
575

N =
566

Access control <0.001
No control (unlimited access to roadway) 70.70% 58.70%
Full control (only ramp entrance & exit) 20.20% 33.20%
Partial control (limited access to roadway) 9.06% 7.60%
Other 0.00% 0.35%
Unknown 0.00% 0.18%

Highway type <0.001
Interstate 28.90% 38.70%
State hwy 24.00% 22.00%
U.S. hwy 16.40% 19.30%
Parish road 11.10% 12.80%
City street 19.50% 7.27%

Road condition <0.001
No abnormalities 78.60% 60.20%
Water on roadway 20.70% 36.70%
Bumps 0.35% 0.71%
Deep ruts 0.00% 0.35%
Other 0.02% 0.54%

Weather <0.001
Rain 78.90% 90.80%
Cloudy 12.90% 6.54%
Clear 7.84% 1.41%
Fog/smoke 0.35% 0.35%
Other 0.00% 0.53%
Sleet/hail 0.00% 0.35%

Day of the week 0.023
FSS 43.00% 49.80%
MTWT 57.00% 50.20%

Driver condition <0.001
Normal 71.30% 61.20%
Inattentive 23.80% 32.40%
Apparently asleep/blackout 0.28% 0.46%
Unknown 2.98% 3.19%

Driver distraction 0.001
Not distracted 82.00% 75.40%
Cell phone 0.35% 0.18%
Other electronic device (pager, palm pilot,
navigation device, Etc.)

0.01% 0.18%

Other inside the vehicle 0.01% 0.71%
Other outside the vehicle 2.29% 1.06%
Unknown 15.30% 22.50%

Driver gender 0.001
F 41.00% 36.70%
M 55.80% 62.70%
U 3.13% 0.53%

5

with hydroplaning. Louisiana crash data provides sequences of harmful
events for each crash records. These sequences are:

- First harmful event
- Second harmful event
- Third harmful event
- Fourth harmful event.

Fig. 2 illustrates the network plot of the association between the se-
quences of the harmful events for the hydroplaning crashes. The darkness
of the lines indicates the node density associated with the harmful event
types. The nodes on the right (motor-vehicle or MV in transport or
multiple-vehicle crash, ran off-road, and ditch) show higher density. Most
of the harmful events are associated with single-vehicle crashes or ran off-
road crashes; however, multiple-vehicle crashes (struck byMV in transport)
are also common. Thefinal dataset shows that 32%of hydroplaning crashes
are multiple-vehicle crashes. A study done by Khattak et al. also showed
similar statistics (Khattak et al., 1998).

Table 1 lists the chi-square test values (a convenient test to determine
the difference between the dataset attributes) and descriptive statistics of
the key variables (variables listed here have p-value < 0.05). The p-
values from the chi-square tests indicate that some of the major contribut-
ing factors are significantly different for two types of crashes (single vehicle
vs. multiple-vehicle) that are associated with hydroplaning. Multiple-
vehicle hydroplaning crashes are higher in percentage than single vehicle
crashes. Interstate crashes are high in single vehicle hydroplaning crashes.
Multiple-vehicle hydroplaning crashes are high in percentages in normal
condition (roadways with no abnormalities, normal driving, and non-
distracted drivers). The next section shows how interpretable machine
learning (IML) can be applied in classifying single and multiple-vehicle
hydroplaning crashes.

As this study is focused on the identification of single or multiple-
vehicle collisions, it is important to examine the significant vehicle related
variables. Vehicle type, vehicle condition, and vehicle year are considered
as the key variables that can provide a glimpse of the vehicle condition
and its impact on hydroplaning related crashes. Vehicle types are not signif-
icantly different in single and multiple crash groups. However, passenger
car crashes are higher in single vehicle crashes. Engine failure is the key fac-
tor of the vehicle condition types. Formultiple-vehicle crashes, this percent-
age is higher than single vehicle crashes. Single vehicle crashes show
slightly higher percentages than multiple-vehicle crashes. The vehicle
year variable also does not show significant differences among single and
multiple-vehicle crashes. Percentages of both new (2011 and after) and
old model (2000 and before) cars are disproportionately higher in multiple
crash groups (Table 2).
Table 2
Key vehicle related variables.

Variable Multi Single

Vehicle type
Passenger car 46.38% 53.39%
Lt. truck (P.U., etc.) 27.15% 29.19%
Suv 18.78% 15.84%
Other 7.69% 1.81%

Vehicle condition
Engine failure 92.99% 88.24%
Defective brakes 0.45% 0.23%
Worn or smooth tires 1.58% 4.07%
Unknown 4.98% 7.69%

Vehicle years
2000 and before 16.06% 13.35%
2001–2010 57.47% 64.71%
2011 and after 26.47% 22.17%



Fig. 3. Framework for crash narrative analysis.
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4.3. Framework for crash narrative analysis

This study developed a framework, as shown in Fig. 3, for the applica-
tion of IML in solving the classification problem using crash narrative
data. The steps are the following:

• Step 1: Data collection. This study collected the electronic data of the
crash narratives. In many cases, the crash reports are hand-written and
are not electronically recorded. Louisiana has begun the process of trans-
ferring all crash reports to electronic versions. The current dataset has
crash narratives for at least 50% of the crash records starting from 2010.

• Step 2: Data cleaning. Data cleaning can be performed by using text
mining algorithms. Available lexicons were used to remove redundant
words, but there is still a need for domain-specific lexicons. For example,
vehicle numbers (i.e., vehicle 1, vehicle 2) are associated with the deter-
mination of the involvements of vehicles. A general lemmatization
(i.e., removal of inflectional endings from words) was performed. How-
ever, some of the significant key words were not lemmatized due to the
importance of meaning in different scenarios. For example, ‘stop’may in-
dicate a ‘stop sign,’ but ‘stopped’ may be associated with two-vehicle
crashes due to the sudden stoppage of the front vehicle.

• Step 3: Application of IMLmodel. This study applied three different ML
models to determine the most suitable model. Many IML tools have been
developed in the recent years. Some of the popular methods are partial
dependence plot (PDP), Local interpretable model-agnostic explanations
(LIME), feature interaction, feature importance, global surrogate models,
Individual conditional expectation (ICE), and Shapley value explanations
(Friedman, 2001; Friedman and Popescu, 2018; Fisher et al., 2018;
Ribeiro et al., 2016; Lundberg and Lee, 2016; Pedersen and Benesty, n.
d.). In this study, this study used LIME as an IML tool.

Before applying the ML algorithms, the text mining tools were applied
tomake the dataset less noisy. Themost common problem in text data anal-
ysis is the excessive number of terms and redundant features in a single nar-
rative. Additionally, words or parts of the words with similar meaning are
compressed into the same term (known as word stemming) to make the
classification more robust. This study performed a basic redundant word
(i.e., removal of prepositions, articles, common words such as road,
crash) to prepare the final dataset. Future work may include more robust
data cleaning that improves model precision based on domain-specific
6

lexicons and stop word list. Fig. 4 shows a sample example of the original
versus the modified crash narrative.

5. Modeling results

Three databases were developed for the analysis: 1) a train set with 452
crashes (67%), 2) a validation set with 88 crashes (13%), and 3) a test set
with 112 crash records (17%) using stratified resampling. After several
trial and errors, this study used several thresholds for themodels. For exam-
ple, the used parameters in XGBoost model are: 1) step size shrinkage =
0.10, 2) minimum loss reduction = 0.01, 3) maximum depth of a tree =
10, and 4) regularization weights = 0.2, and 1. Models developed from
train data were applied to validation and testing data to evaluate their per-
formance. Table 3 lists the model outcomes in classifying single and
multiple-vehicles hydroplaning crashes. The values show that XGBoost al-
gorithm performed better than both SVM and RF. Accuracies were calcu-
lated as 84%, 77%, and 71% for train, validation, and test data,
respectively. These accuracies can be further improved by developing a ro-
bust crash narrative lexicon that includes stop words and trigger words, or
words that are highly associated with crash outcomes.

True positive (TP) and false positive (FP) are the measures of correct
and incorrect classifications per actual or real class, respectively. True neg-
ative (TN) and false negative (FN) are measures of correct and incorrect re-
jections per real class, respectively (Labatut and Cherifi, 2011). Some of the
common measures of model performance and accuracy are listed in
Table 4.

Table 5 lists the performance measures of the ML models for train, val-
idation, and test data. Based on the performancemeasures described above,
XGBoost shows better performances than the other two models.

As previously mentioned, “trusting a prediction” is important to “trust
the model.” However, the confusion matrix may not always be suitable to
evaluate the model; hence, model explanation is crucial. This study applied
a recently developed interpretable ML algorithm, LIME, to explain the pre-
dictions of any classifiers in an interpretable manner. This study used the
R package ‘lime’ to interpret the model outcomes (Pedersen and Benesty,
n.d.). For example, considering the target ‘multiple-vehicle crash,’ six crash
reports are randomly selected to visualize the association of the keywords
and the output (Fig. 5a). Label one will indicate that the XGBoost model pre-
dicts the crash as amultiple-vehicle hydroplaning crash. Similarly, label zero
will indicate the crash as a single-vehicle crash. The explanation models

Image of Fig. 3


Fig. 4. Sample example of original and cleaned text narrative.
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considered the 10 words with the highest associations in this study (blue in-
dicates the word supports in true classification and red indicates the word
contradicts in the classification task). For explanation plots, only the top
Table 4
Performance measures.

Measure Definition

Recall or sensitivity TP
TPþFN

Specificity TN
TNþFP

Precision TPþTN
TPþTNþFPþFN

Accuracy TPþTN
TPþTNþFPþFN

Balanced Accuracy TP
TPþFN � 0:5þ TN

TNþFP � 0:5

F − score 2�Precision�Recall
PrecisionþRecall

Table 5
Performance measures if the ML models.

Model Data Sensitivity Specificity

SVM Train 0.8173 0.7214
Validation 0.6296 0.6765
Test 0.5974 0.6571

RF Train 0.8333 0.7286
Validation 0.6667 0.7353
Test 0.6234 0.6857

XGBoost Train 0.8654 0.7857
Validation 0.7407 0.8235
Test 0.7013 0.7429

Table 3
Confusion matrix of the predicted classes.

Model Class (observed) Train (452 crashes) Valida

Single (predicted) Multiple (predicted) Single

SVM Single 255 57 34
Multiple 39 101 11

RF Single 260 52 36
Multiple 38 102 9

XGBoost Single 270 42 40
Multiple 30 110 6

7

four highly associatedwords were displayed. Fig. 5a shows that all cases (ex-
cept Case 3) are single-vehicle crashes; the bars indicate the associationwith
the classification. For example, Case 1 shows that the probability is 0.94
What is measured

Effectiveness of positive level identifications

Effectiveness negative level identifications

Class agreement of the data labels with the positive labels

Overall accuracy

Average of the proportion corrects of each class individually

Weighted average of the recall and precision

Accuracy Balanced accuracy Precision F-score

0.7876 0.7694 0.8673 0.8416
0.6477 0.6531 0.7556 0.6869
0.6161 0.6273 0.7931 0.6815
0.8009 0.7810 0.8725 0.8525
0.6932 0.7010 0.8000 0.7273
0.6429 0.6545 0.8136 0.7059
0.8407 0.8255 0.9000 0.8824
0.7727 0.7821 0.8696 0.8000
0.7143 0.7221 0.8571 0.7714

tion (88 crashes) Test (112 crashes)

(predicted) Multiple (predicted) Single (predicted) Multiple (predicted)

20 46 31
23 12 23
18 48 29
25 11 24
14 54 23
28 9 26

Image of Fig. 4


(a) Randomly selected six reports (Level 1: multiple-
vehicles, level 0: single vehicle) 

(b) Text explanation of Case 3 to Case 6 in the left-hand side 
(Level 1: multiple-vehicles, level 0: single vehicle) 

Fig. 5. Interpretation by keywords from randomly selected crash reports from the test dataset.
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(with explanation fit of 0.90) for this case to be considered as single-vehicle
crash. Thewords in the crash narrative identify the class as single vehicle are
‘approximately,’ ‘feet,’ ‘interstate,’ ‘began,’ and ‘hydroplane.’ The plots show
that the word ‘rear’ conflicts with single-vehicle crashes, which is obvious as
‘rear-end’ crashes are usually multiple-vehicle crashes. Case 6 shows that the
probability is 0.53 for this case to be considered asmultiple-vehicle. High as-
sociations are seen for the words ‘stop,’ ‘stopped,’ ‘brakes,’ ‘attempted,’ and
rear. The word ‘traveling’ shows a negative association. The other cases
can also be explained based on the associated values of each word and the
overall probability and explanation fit value, a value which represents
how much the explanation can be done by using the top 10 words.

Fig. 5b is another display of the mechanisms of the IML algorithm. It
shows the condensed form of the crash reports and red and blue identifiers
for the classification task for first three cases in the left-hand side of Fig. 5.

6. Conclusions

Studies show that hydroplaning crash outcomes widely vary in single
and multiple-vehicle crashes. This study developed a framework of three
ML methods to determine the best fit model in identifying vehicle involve-
ment in hydroplaning crashes. The crash characteristics that were identi-
fied in this study can help researchers better understand the contributing
factors of these crashes. This study assessed the predictive performance of
textmining to detect single andmultiple-vehicle crashes fromhydroplaning
crash-related studies. This study also evaluated the efficacy of text mining
using free text from crash narratives. The data used in this study included
the crash narratives in electronic form for all hydroplaning crashes in Lou-
isiana from 2010 to 2016.

This study achieved twomajor objectives: 1) developed a framework for
applying ML models to unstructured textual content to classify the number
of vehicle involvements and 2) applied an interpretable ML framework
which can identify the effectiveness of keywords in determining the classi-
fication mechanism. The study also included a comprehensive literature re-
view of previous studies that have employed text mining to a traffic crash
and occupational injury data. The framework can also be used to conduct
other crash-related classifications (e.g., collision type) from the crash narra-
tives. The XGBoost classifiers demonstrated a high prediction power with
an accuracy of 71% (test data). This proves that underlying trends or pre-
cursors can be revealed and analyzed throughML algorithms. Furthermore,
this indicates that quantitative modeling techniques can be used to address
safety concerns.

The study has several limitations. Ideally, the classification accura-
cies should be higher. However, the current scope is limited to examin-
ing the performance of the crash narratives in identifying crash types.
Additional variables such as vehicle and crash characteristics can
improve the performance of the current model. Furthermore, the find-
ings from this study are dependent on the accuracy of the information
provided in the text of police reports. Future research should aim to de-
velop a ‘traffic crash lexicon’ with words that are highly associated with
crash characteristics. The development of such lexicon will also improve
the model performance.
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